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Abstract. We have applied the fast Fourier transform, which allows one to compute efficiently
convolution sums, to solve the set of self-consistentT -matrix equations to get the Green function
of the two-dimensional attractive-U Hubbard model belowTc, extending previous calculations
by the same authors. Using a constant order parameter1(T ), we calculatedTc as a function
of the electron density and interaction strengthU . These global results deviate from the BCS
behaviour remarkably.

Although the Hubbard model [1] is the simplest model for describing correlated electron
behaviour in a solid, the mathematical treatment is far from trivial. Many attempts have
been made to understand the phase diagram. A fully understood Hubbard model might form
the basis of an understanding of correlated electron systems, much as the Ising model did for
the understanding of critical phenomena in magnetism. The attractive-U Hubbard model
might play an important role in the understanding of high-temperature superconductivity
and has been attracting much attention in the past few years. We have implemented theT -
matrix approximation which goes beyond the usual mean-field approximation and becomes
exact in the dilute limit, i.e. where only two-particle interactions take place [2].

We consider the attractive-U Hubbard model in two dimensions on a square lattice
(lattice constanta) [3]:

H =
∑
k,σ

ξkc
†
kσ ckσ + U

∑
k,k′,q

c
†
k+q↑c

†
−k↓c−k′↓ck′+q↑ (1)

with band energyεk = −2t (coskxa + coskya) and on-site attractionU < 0, where
ξk = εk − µ, µ is the chemical potential, andt , the hopping of electrons between nearest-
neighbour sites, determines the energy unit. The creation (annihilation) operators for an
electron with momentumk and spinσ are denoted byc†kσ (ckσ ).

The T -matrix (effective interaction) is the sum of particle–particle ladder diagrams
with the smallest number of closed fermion loops. In the low-density limit, these are the
dominating terms of the perturbation expansion in terms of the interactionU . For the
Hubbard model, where we have only on-site interactions, theT -matrix approximation leads
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to a set of self-consistent equations for the one-particle Green function [4] in the normal
phase:

G(k, iωn) = [iωn − ξk +6(k, iωn)]
−1 (2)

where the diagonal self-energy term

6(k, iωn) = 1

βN

∑
q,m

T (q, iεm)G(q − k, iεm − iωn) (3)

depends on theT -matrix

T (q, iεn) = −U
1+ Uχ(q, iεn)

(4)

which is a simple function of the independent pair susceptibility

χ(q, iεn) = 1

βN

∑
k,m

G(k, iωm)G(q − k, iεn − iωm). (5)

Here, ωn = (2n + 1)π/β and εn = 2nπ/β are the fermionic and bosonic Matsubara
frequencies,N = NxNy whereNx andNy are the grid dimensions ink-space, andβ ≡ 1/T
is the inverse temperature. We fix the chemical potential on the basis of the electron density
(one spin direction):

n(β, µ) = 1

βN
lim
η→0+

∑
k,n

G(k, iωn)e
iωnη. (6)

To go belowTc, we introduce a constant superconducting order parameter1 = |1|
into the Green function following the usual 2× 2 Nambu matrix formalism, and get for the
diagonal part the expression (∗ means complex conjugate)

G(k, iωn) = 0∗(k, iωn)

|0(k, iωn)|2+ |1|2 (7)

where

0(k, iωn) = iωn − ξk +6(k, iωn). (8)

Equation (7) reduces to the usual BCS Green function when the self-energy term is set to
zero (or to the Hartree shift).1 is our approximation for612(k, iωn), the off-diagonal
self-energy. The order parameter1(T ) is determined by

1

U
= 1

βN

∑
k,n

1

|0(k, iωn)|2+ |1|2 (9)

which closes the set of equations.
To solve the set of equations (3)–(7) and (9) we apply the following scheme.

(i) Start by calculatingG0(k, iωn), i.e. the Green function for the free system(6 = 0).
A suitable initial value forµ and1 must be given (µ = −3.5 and1 = 0.5 are reasonable
values forT = 0.1, U = −4 andn = 0.1).

(ii) Calculateχ(q, iεm), T (q, iεm) and6(k, iωn) using equations (5), (4) and (3).
(iii) At this point, we need an improved estimation ofµ and 1. To get a stable

iteration scheme, both parameters must be adjusted simultaneously. We do that by searching
for a solution(µ,1) for equations (6) and (9) using a Newton algorithm. For technical
purposes we neglect the dependence onµ and1 for the self-energy, so as to be able to
numerically calculate the partial derivatives needed for the Newton algorithm. Because of
that approximation we cannot use the new estimate of(µ,1) directly. Instead we move
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only a small step, in theµ–1 plane, from the current point to the new point (about one
third of the total distance).

(iv) Calculate an improved Green function using the new parametersµ and1.
(v) Repeat steps (ii) to (iv) until the electron density has reached its desired value within

a given tolerance.

In order to obtain results which are independent of the finite size, one should use at
least some 103 Matsubara frequencies and a grid of 30× 30 lattice points. The above
scheme works in principle, but a closer look at the equations forχ and6 shows that the
straightforward implementation of these equations does not work in practice. This is due
to the fourfold loops which would occur in the computer program. Suppose we use 2000
Matsubara frequencies and a 30× 30 grid. Then we have to carry out for every grid point
and every frequency the double sum over all frequencies and all grid points. This leads to
of the order of(302 × 2000)2 = 3.24× 1012 complex operations. Even one of the fastest
supercomputers would need one to several hours to make one iteration step.

Since the frequency and momentum summations are convolutions, we evaluate them
using the fast Fourier transform (FFT). The transformsk → x andx → k are the usual
ones and we do not elaborate on them any further. The transforms fromτ → iω and
iω→ τ are described in more detail. In the following, the notation

FFT M [F(xj )]n = 1√
M

M−1∑
j=0

e−2π ijn/MF (xj ) (10)

and

FFT −1
M [F(xn)]j = 1√

M

M−1∑
n=0

e2π inj/MF (xn) (11)

is used. The Matsubara frequencies are slightly redefined to be more suitable (having
non-zero indices) for numerical work, and read

ωn = (2n+ 1−M)π
β

εn = (2n−M)π
β
. (12)

We discretize the integral

G(iωn) =
∫ β

0
dτ eiωnτG(τ) (13)

by writing τj = j 1τ, j = 0, . . . ,M − 1, where1τ = β/M andM is the number of
Matsubara frequencies used. We obtain

G(iωn) = β√
M
FFT −1

M [eiπj (1/M−1)G(τj )]n. (14)

The phase factor eiπj (1/M−1) arises because of the fermionic frequenciesωn and the shift in
the definition ofωn. Similarly one can define the transforms for the bosonic frequencies as

X(iεn) = β√
M
FFT −1

M [e−iπjX(τj )]n (15)

whereX is eitherχ or 6. We can now rewrite equations (5) and (3) to read

χ(iεn) = β√
M
FFT −1

M [e−iπjG2(τj )]n (16)

and

6(iωn) = − β√
M
FFT −1

M [eiπj (1/M−1)T (τj )G(−τj )]n. (17)
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These expressions are also well suited for parallel machines since the 3D-FFT (one
imaginary-time and two space dimensions) can be decomposed into parallel processes.

We also need to calculate the electron density, but evaluating (6) numerically is not
possible. To remove the limitη → 0+, we make use of the definition of the Green
function:

G(τ) = 〈c†(τ )c(0)〉 τ > 0 (18)

and

G(−τ) = 〈c(0)c†(−τ)〉 = −1+ 〈c†(−τ)c(0)〉 τ > 0. (19)

Taking the sumG(τ)+G(−τ) and lettingτ → 0+ we get

n = 1

2
[G(0+)+G(0−)] + 1

2
= G(0)+ 1

2
. (20)

Therefore, the electron density now reads

n(β, µ) = 1

2
+ 1

βN

∑
k,n

G(k, iωn). (21)

This is an expression which can be evaluated easily. A similar correction forG(τ = 0)
must be applied in equations (16) and (17). Our equation (21) generalizes equation (3.1.2)
of Mahan [5].

We have comparedn(β, µ) for the cases where6 = 0 and6 = nU/2 (the Hartree
shift) with the exact results and concluded that a grid of 32× 32 lattice sites and 2048
frequencies is a lower limit forU = −4 and temperatures down toT = 0.1. For larger|U |
and/or lower temperatures one should increase the number of frequencies.

So far, we have evaluated the Green function at the Matsubara points. Normally,
we are really interested in the Fourier transform of the retarded real-time Green function
which is a function of the real frequency. In principle, we get this function by analytic
continuation of the complex-frequency Green function from the Matsubara points to the real
axis. Since the resulting integral equations would be more complicated (involving integrals
over Fermi and Bose distribution functions) than the discrete frequency summations, we
first calculate the Green function at the Matsubara points as described in the preceding
section. Then we continue to the real-frequency axis by fitting a rational function (an
M-point Pad́e approximant) to the calculated values [6]. The dynamical properties of the
attractive Hubbard model in the superconducting phase are discussed in reference [7]. Here,
we concentrate on the global properties of the attractive Hubbard model.

The algorithm works as follows. Given a functionf (zi) = ui with valuesui at M
complex pointszi, i = 1, 2, . . . ,M, the Pad́e approximant is defined as a ratio of two
polynomials which can be written as a continued fraction:

CM(z) = a1

1+ a2(z − z1)

1+ · · · + aM(z − zM−1)

1+ · · ·

(22)

where the coefficientsai are to be determined so that

CM(zi) = ui i = 1, 2, . . . ,M (23)

which is fulfilled when theai are given by the recursion

ai = gi(zi) g1(zi) = ui i = 1, 2, . . . ,M (24)
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and

gp(z) = gp−1(zp−1)− gp−1(z)

(z − zp−1)gp−1(z)
p > 2. (25)

Once the coefficientsai are determined for a particular function, the function values at a
real frequencyω can be obtained by settingz = ω + iδ in (22), whereδ is used to remove
unphysical peak structures due to finite-size effects. The choiceδ = 0.1–0.2 is appropriate
for our calculations. In reality, the choice ofδ is dictated by the precision with which the
self-consistency in the Matsubara frequencies is achieved. This point has been discussed by
Georgeset al [8]. In this letter we limit the discussion of the results to the regime where
T < Tc, since results forT > Tc are reported elsewhere [9].
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Figure 1. The order parameter1 versus temperature for the densityn = 0.1 and interaction
strengthU = −4t .

Figure 1 shows the temperature dependence of the order parameter forn = 0.1 and
U = −4t . The system size is 32 by 32 grid points ink-space and 1024 Matsubara
frequencies. The order parameter shows a very sharp drop to zero (compared with
BCS behaviour) which indicates the strong influence of fluctuations for all temperatures.
1(T = 0) is nearly twice as large as the corresponding1BCS whereas the critical
temperature is much lower thanT BCSc —by more than a factor of three. For example,
1(0)/Tc ≈ 3.86, which is more than twice the BCS ratio(≈1.76). This implies that we are
not in the weak-coupling limit, which is opposite to the case considered by Martı́n-Rodero
and Flores [10] who find the BCS universal ratio in the second order of perturbation for
the continuous Hubbard model. The value of1(T ) = 0 defines the critical temperature,Tc.
In order to calculateTc we have drawn a straight line close to the sharp drop of the order
parameter. Near the critical temperature we had some convergence problems. However,
the evaluation ofTc is precise because it is calculated as described previously.

The density dependence ofTc is plotted in figure 2. It is well known that in the
strong-coupling limit the attractive-U Hubbard model close to half-filling can be mapped
to a Heisenberg model which shows no Kosterlitz–Thouless transition [11]. It is therefore
anticipated that the critical temperature near half-filling will be reduced even in the weak-
and intermediate-coupling regimes. The absence of this property in our results can be
attributed to the neglect of the particle–hole channel (charge fluctuations) in theT -matrix.
Thus, we should restrict ourselves to low densities where theT -matrix approach is indeed
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Figure 2. The critical temperatureTc versus electron densityn (n = 0.5 corresponds to half-
filling) for an interaction strengthU = −4t .

valid. To treat higher densities, we should implement, for example, the FLEXC approach
[12] goal which we are pursuing at this moment for the attractive Hubbard model. Here, we
mention that theT -matrix and FLEXC approaches are conserving in the Kadanoff–Baym
sense [2]. Denteneeret al [13] obtained the critical temperature by calculating the helicity
modulus associated with a wavelike distortion(1j = |1| exp(2iq·rj )) of the order parameter
in the BCS approximation as a function of temperature and subsequent comparison with
the Kosterlitz–Thouless relation between the critical temperature and helicity modulus—but
they miss the logarithmic drop to zero when approaching half-filling.

-12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0
U/t

0.00

0.10

0.20

0.30

0.40

T
c/t

Figure 3. The critical temperatureTc for various interaction strengthsU for the constant density
n = 0.1.

Figure 3 shows the critical temperature as a function of the interaction strength. In
contrast to the BCS behaviour (which shows an exponential increase ofTc for small |U |
and becomes linear in|U | for larger values), the increase ofTc is reduced drastically. The
expected decrease ofTc for large |U | cannot be observed for the values ofU treated here.
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This expectation is based on the fact that for strong attraction and near to half-filling the
model can be mapped onto a pseudo-spin model with the effective interaction constant
J = 4t2/|U |, resulting in aTc decreasing with increasing|U |. The behaviour that we
observe forTc/t versusU/t is similar to the one obtained by Nozières and Schmitt-Rink
[14] using the Thouless criteria for the normal phase. Most probably we would have to
include additional fluctuations in the off-diagonal self-energy [15]. Unlike in the case of
the normal-state calculations where, forρ = 0.1, we could not obtain convergence for
|U | > 4.0, in the superconducting phase the program is stable for large values of|U |. Just
recently we have found that to get convergence for large|U | and/or smallT we have to
move in the proper way in the parameter space(µ, ρ). See reference [15].

In conclusion, we have calculated the critical temperature of the negative-U Hubbard
model within theT -matrix approximation. The expected smooth crossover from BCS to
Bose condensation cannot be fully observed in the parameter space studied in this letter.
Although the exponential-to-linear increase ofT BCSc with growing|U | is reduced drastically,
an optimal critical temperature has not been found. Perhaps we should fully go beyond BCS
calculations in the off-diagonal self-energy, as has been done by Schafroth and Rodrı́guez-
Núñez [15]. In this work [15], the authors have studied the dynamical properties of the
attractive Hubbard model in presence ofdouble fluctuations. As previously discussed, we
have obtained the result that1/Tc is more than twice the BCS value. To getTc = 0
at half-filling we must include charge fluctuations. Investigations along these lines are
under way [16]. The value1(0)/Tc ≈ 3.86, and the temperature behaviour of1(T ) at
U/t = −4.0, n = 0.1 are very different from the BCS results. These global results suggest
that for U/t = −4.0, n = 0.1 we are already in the intermediate-coupling regime where
correlations are important.

This work was supported by the Swiss National Science Foundation and CNPq (the Brazilian
Agency). We would like to thank Professor T Schneider, Dr M H Pedersen, Professor R
Micnas and Dr J M Singer for helpful and stimulating discussions. We thank Professor
Maŕıa D Garćıa Gonźalez for reading the manuscript.
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